O dispositivo MAH a ser usado na síntese das estruturas foi desenvolvido por im em meu doutorado e este dispositivo foi montado, tomando-se como base um forno de micro-ondas Panasonic®, Modelo MN-S46B, com frequência de 2.45 GHz e 800 W de potência nominal. Deste equipamento, apenas a magnétron (válvula termiônica para gerar micro-ondas) foi ligada a um controlador externo tipo “PID” de temperatura a fim de controlar a irradiação. A célula reacional foi construída em politetrafluoretileno (PTFE, Teflon®) com espessura de, aproximadamente, 3 cm e reforçada com aço-inox devidamente aterrado. O aquecimento do sistema se dará devido à direta interação da radiação (micro-ondas) com o solvente (água), proporcionando assim um aquecimento eficiente. Como a taxa de aquecimento é elevada, ocorrerá alta taxa de nucleação e uma baixa taxa de crescimento. Logo, partículas menores e/ou auto-organizadas serão obtidas. Para a obtenção dos compostos desejados serão utilizados sais de metais de transição podendo ser associados a alcalinos e alcalinos terrosos puros e dopados com elementos terras raras. Cada precursor será dissolvido em água destilada e deionizada em proporções estequiométricas adequadas para cada amostra. Esta dissolução será sob agitação vigorosa com a posterior adição de agentes mineralizadores para a precipitação dos hidróxidos, se necessário para a síntese. A mistura reacional resultante da precipitação dos hidróxidos será então transferida a uma autoclave de PTFE e acoplada ao micro-ondas como na Figura 1. Serão utilizadas baixas temperaturas e tempos curtos com taxas de aquecimento da ordem de 100°C/min, as quais podem gerar pressões de até 8 bar.
Após a síntese, o precipitado obtido será lavado com água deionizada até que o pH = 7. Este processo é adequado visto que o cloreto de potássio é solúvel em água e, portanto, fácil de ser retirado com as sucessivas lavagens e secas em estufa a 80°C por até 12 h.
Caracterização:
a) Difração de raios X (DRX)
As condições usadas para as análises serão escolhidas de acordo as necessidades de cada sistema. Para um estudo estrutural qualitativo e quantitativo será aplicado o método de refinamento de Rietiveld, utilizando-se o programa General Structure Analysis System (GSAS) [82].
b) Espectroscopia óptica nas regiões ultravioleta e visível (UV-Vis)
A análise por espectroscopia óptica nas regiões das radiações ultravioleta e visível (UV-Vis) torna possível à observação de efeitos quânticos relacionados a alterações na energia do gap com relação a desordem estrutural e influência da dopagem sobre as absorções. Ainda vale lembrar que somente 4% do espectro solar compõem a região ultravioleta assim torna-se importante o conhecimento do comportamento do composto em cada região do espectro eletromagnético.
c) Espectroscopia Raman
A espectroscopia Raman será utilizada como técnica complementar à DRX, devido a esta ser mais sensível às mudanças de parâmetros de ordem local. A espectroscopia Raman, fornece informações do retículo cristalino, assim tornando as duas técnicas (RAMAN e DRX) complementares na análise de formação de fases. Sobretudo, em relação ao efeito de pequenas concentrações de dopantes no retículo cristalino, como é o interesse do presente projeto.
d) Microscopia Eletrônica de Transmissão e Varredura
Para a determinação de forma, tamanho e distribuição das nano ou mesopartículas será essencial o uso da microscopia eletrônica de varredura por força de campo (FE-SEM). Este permitindo imagens de alta resolução. Auxiliando a determinação da natureza da forma dos cristais sintetizados, a qual somente será determinada com maior precisão no caso de nanopartículas por microscopia eletrônica de transmissão de alta resolução. Neste trabalho serão utilizados os microscópios do INCTMN e do centro de microscopia da FURG.
e) Espectroscopia de Absorção de Raios-X Próximo à Borda de Absorção
A absorção de raios X próxima a borda do elemento ao ser analisada permite obter-se informações relativas à simetria local do elemento e seu estado de oxidação. Os espectros de absorção na borda K e L serão obtidos no SÍRIUS mediante entrada plana em operação e aprovação de propostas. Os espectros XANES são coletados usando um passo de energia e tempo de integração específico para cada sistema. A maior parte das medidas na borda K são realizadas pelo método de transmitância com os compostos depositados sobre membranas de 200 nm e utilizando um monocromador tipo “channel-cut” de Si (220) ou (111) e as medidas da borda L são realizadas transmitância ou por meio de medida indireta, sendo o rendimento total de elétrons gerados como resultado da irradiação sobre a amostra pelo feixe de raios X.
f) Espectroscopia de Fotoluminescência
A resposta da propriedade fotoluminescente do material obtido será analisada em comprimentos de onda de excitação da ordem de 350 a 405 nm, empregando-se um espectrômetro Jobin-Yvon, modelo U1000, e/ou um monocromador Jarrel-Ash Monospec 27 associado a uma fotomultiplicadora Hamamatsu R446 sob uma excitação provida por um laser de Kriptônio operando a 200 mW. A espectroscopia de luminescência associada a outras técnicas de caracterização permite uma avaliação do grau de ordem imposta ao sistema durante a síntese e processamento. Assim associada diretamente às absorções de ultravioleta e visível será possível avaliar o comportamento óptico/estrutural dos sistemas em estudo.
g) Espectroscopia de Radioluminescência por Raios X
A cintilação de compostos inorgânicos é pouco conhecida, principalmente no que diz respeito ao composto deste projeto nunca estudado para estes fins. O comportamento das amostras frente à propriedade radioluminescente será avaliado pela excitação por Raios X sob a excitação do Cu Kα. As condições de varredura em 2θ serão empregadas de acordo com as necessidades, para melhor resolução das medidas de radioluminescência. O espectro de radioluminescência será armazenado durante a irradiação, empregando um espectrômetro Ocean Optics HR2000 equipado com fibra óptica de amplo espectro UV-VIS-NIR.
h) Medidas Fotovoltaicas.
Para a realização das medidas elétricas das células fotovoltaicas serão utilizados: uma SMU U2702 da Keysight; um potenciostato VersaSTAT 3 da Ametek; e um simulador solar da ScienceTech, classe AAA, modelo SLB300A, com filtro AM1.5G. Em uma sala com temperatura controladada a 25°C e com umidade relativa de 70%. Para as medidas das células fotovoltaicas segue-se a norma IEC 60904-1, que estabelece condições padrão. Nas medições das células, serão realizadas medidas com uma varredura inicial de – 0,6 V até 0,6 V e, em geral, utilizar-se-á um passo de 5 ou 10 mV para que se possa estimar o comportamento inicial do material. A seguir a diferença de potencial inicial, diferença de potencial final e passo serão ajustados, conforme cada caso a fim de obter a curva J Vs. V característica de uma célula fotovoltaica, que se assemelha a curva de um diodo.
i) Medidas fotocatalíticas
A avaliação da atividade fotocatalítica das amostras será feita analisando-se a oxidação do corante Rodamina B (RhB). Serão colocadas quantidades determinadas de solução aquosa do corante (previamente preparado) e, também, de amostra do material sintetizado. Estas soluções serão então ultrassonificadas, para homogeneizar a dispersão, e posteriormente serão colocados em um fotoreator com temperatura fixa de 20°C e iluminado por seis lâmpadas UV (Philips TUV, 15W, com uma intensidade máxima a 254 nm). Em intervalos de tempos estabelecidos, uma alíquota de 3 ml destas suspensões será centrifugada para remover os cristais em suspensão. Finalmente, variações da banda de absorção máxima das soluções serão monitorizadas por espectro de absorbância UV-vis utilizando um espectrofotômetro de feixe duplo com um monocromador e um detector tipo fotomultiplicador de JASCO (Modelo V-660, EUA).
j) Modelagem computacional
Otimizações de geometria podem ser realizados para todos os pontos estacionários (mínimos reais) buscando-se a condição estrutural mais estável para cada situação e assim sermos aptos a descrever a estrutura dos materias estudados. Frequências harmónicas das estruturas otimizadas podem ser calculadas para corroborar a natureza dos mínimos calculadas numericamente a partir de segunda derivada da energia total usando a primeira derivada calculada analiticamente, onde os gradientes devem ser zero (primeira derivada da energia) e os autovalores positivos (segunda derivada da energia) obtidos a partir da matriz Hessiana que leva em conta a massa ponderada de cada átomo e então diagonalizada sendo seus autovalores convertidos em frequências.
A simulação computacional “ab initio” é realizada usando aproximações periódicas implementadas pelo pacote computacional “CRYSTAL09” baseado na Teoria Funcional de Densidade (TFD) [41] que permite analisar as densidades eletrônicas sobre cada cluster (octaédrico, cubo-octaédrico, tetraédrico dentre outros) utilizando-se de projeções sobre determinados planos cristalográficos. Para as integrais de troca e correlação o gradiente do funcional de correlação corrigido por Lee, Yang e Parr, combinado com a parâmetro híbrido não-local de troca de Becke3, “B3LYP” será preferencialmente implementado devido ao fato de ser estabelecido para óxidos cerâmicos [43]. Os centros atômicos são expressos para todos os elétrons segundo suas respectivas funções de base. Esta modelagem deve representar as estruturas experimentais, oferecendo um sistema que permite a compreensão dos efeitos das deformações estruturais sobre a estrutura eletrônica sem suprimir a geometria original sendo útil para os cálculos períodos aplicados ao estudo de processos de conversão de energia [44,45]. Para realização dos cálculos serão utilizados os parâmetros internos e os parâmetros de rede obtidos a partir dos refinamentos estruturais de Rietveld para cada sistema em estudo.