Nome da Disciplina
CÁLCULO I
CÓDIGO
11100080
Carga Horária
90 horas
Atividade Complementar
Não
Periodicidade
Semestral
Modalidade
PRESENCIAL
Unidade responsável
CARGA HORÁRIA TEÓRICA
6
CARGA HORÁRIA OBRIGATÓRIA
6
CRÉDITOS
6
FREQUÊNCIA APROVAÇÃO
75%
NOTA MÉDIA APROVAÇÃO
7

Ementa

Limites: conceitos, tipos diferentes (geral, unilateral, parcial, infinitos, no infinito), propriedades, indeterminações.
Continuidade: conceito, propriedades locais, descontinuidades, propriedades globais (teoremas do valor intermediário e de Weierstrass). Diferenciabilidade: conceito de derivada e de diferencial, propriedades principais, derivadas de funções elementares, teorema do valor médio, fórmula de Taylor, aplicações geométricas e físicas.

Objetivos

Objetivo Geral:

Objetivos Gerais:
Conhecer e compreender, analisar e sintetizar as principais ideias referentes ao estudo da derivação de funções reais de variáveis reais.

Objetivos Específicos:
- Desenvolver conceitos de limite, continuidade, diferenciabilidade de funções reais de uma variável real.
- Estudar técnicas de cálculo de limites e derivadas.
- Estudar propriedades locais e globais de funções contínuas e diferenciáveis.
- Aplicar teoremas sobre derivadas para investigação de gráficos das funções.
- Desenvolver conhecimentos e técnicas que sejam úteis aos alunos, capacitando-os à aplicação dos temas abordados, mediante exemplos práticos e desenvolvimento de métodos.

Conteúdo Programático

1.Teoria de limites
1.1 Ponto de acumulação e vizinhança
1.2 Conceito do limite e sua unicidade
1.3 Propriedades elementares dos limites
1.4 Limites unilaterais e parciais
1.5 Limites infinitos, limites no infinito e indeterminações
1.6 Cálculo dos limites de funções elementares e sequências principais
1.7 Limite de função composta

2.Continuidade de funções
2.1 Continuidade num ponto e num conjunto.
2.2 Ligação entre continuidade e limite
2.3 Propriedades elementares de funções contínuas
2.4 Continuidade de função composta
2.5 Classificação de descontinuidades
2.6 Continuidade de funções elementares
2.7 Propriedades globais de funções contínuas: teoremas do valor intermediário e de Weierstrass (de extremos globais)

3.Diferenciabilidade
3.1 Conceito de derivada e de diferencial
3.2 Ligação entre diferenciabilidade e continuidade
3.3 Interpretação geométrica e física
3.4 Regras aritméticas de derivação
3.5 Derivada da função composta e da inversa
3.6 Derivadas de funções elementares
3.7 Teorema de Rolle e de Lagrange (do valor médio)
3.8 Derivadas de ordem superior
3.9 Regras de L’Hospital 3.10 Fórmula de Taylor 3.11 Aplicações de derivadas para investigação de funções e construção de seus gráficos 3.12 Aplicações de derivadas na resolução de problemas físicos

Bibliografia

Bibliografia Básica:

  • Anton H., Bivens I., Davis S. Cálculo. Vol.1. Bookman.
  • Leithold L. Cálculo com geometria analítica. Vol.1. Harbra.
  • Stewart J. Cálculo. Vol.1. Cengage Learning.
  • Thomas, G. B., Weier M.D., Hass J. Cálculo, Vol 1. Addison Wesley.

Bibliografia Complementar:

  • Ávila G. Análise matemática para licenciatura. Blucher.
  • Rudin W. Principles of mathematical analysis. McGraw-Hill.
  • Spivak M. Calculus. Publish of Perish.

Turmas Ofertadas

Turma Período Vagas Matriculados Curso / Horários Professores
T1 2020 / 1 70 6 Matemática (Licenciatura - Noturno)
Matemática (Licenciatura)
Horários
ManhãTardeNoite
SEG19:00 - 19:50
19:50 - 20:40
QUA19:00 - 19:50
19:50 - 20:40
SEX19:00 - 19:50
19:50 - 20:40
ANDREI BOURCHTEIN
Professor responsável pela turma

Disciplinas Equivalentes

Disciplina Curso
CÁLCULO I Matemática (Licenciatura - Noturno)
CÁLCULO I Matemática (Licenciatura)

Página gerada em 10/04/2020 10:35:52 (consulta levou 0.166142s)