Nome do Projeto
Grupo de estudos sobre machine learning para bioinformática - 2021
Ênfase
Ensino
Data inicial - Data final
24/03/2021 - 31/12/2021
Unidade de Origem
Coordenador Atual
Área CNPq
Ciências Biológicas
Resumo
A área de bioinformática vem desempenhando um papel cada vez mais crucial nos avanços da ciência biológica e da biotecnologia. Esta disciplina consiste na aplicação de métodos computacionais no processamento de dados biológicos, com foco principal naqueles derivados de técnicas de biologia molecular e bioquímica, como o sequenciamento de genomas, análise de estruturas de biomoléculas, compreensão de rotas metabólicas e de regulação gênica, dentre outros. Com o aumento exponencial na disponibilidade de dados observado nos últimos anos, métodos de aprendizado de máquina vem sendo cada bem mais empregados na criação de soluções para a bioinformática, permitindo assim a extração de conhecimento de forma mais automática e com menor necessidade de intervenção humana, a criação de métodos preditivos para diversas características de interesse, dentre outras aplicações. Deste modo, visando a melhor formação de recursos humanos no contexto da biotecnologia e bioinformática, o presente projeto tem por objetivo facilitar a troca de conhecimentos sobre a bioinformática, aprendizado de máquina e outras áreas correlatas.
Objetivo Geral
Promover a troca de conhecimentos sobre a aplicação de técnicas de aprendizado de máquina (machine learning) no contexto da bioinformática.
Justificativa
A área de bioinformática vem desempenhando um papel cada vez mais crucial nos avanços da ciência biológica e da biotecnologia. Esta disciplina consiste na aplicação de métodos computacionais no processamento de dados biológicos, com foco principal naqueles derivados de técnicas de biologia molecular e bioquímica, como o sequenciamento de genomas, análise de estruturas de biomoléculas, compreensão de rotas metabólicas e de regulação gênica, dentre outros. Com o aumento exponencial na disponibilidade de dados observado nos últimos anos, métodos de aprendizado de máquina vem sendo cada bem mais empregados na criação de soluções para a bioinformática,
O aprendizado de máquina (machine learning) é uma área da inteligência artificial dedicada à criação de algoritmos capazes de resolverem problemas para os quais não foram explicitamente programados. Para isso, ao invés de executarem instruções definidas para um problema específicos, os algoritmos aprendem, a partir da exposição a conjuntos de dados, quais "hipóteses" são mais relevantes para a solução de um problema específicos, e as utilizam posteriormente para a solução de um determinado problema. Deste modo, um mesmo algoritmo pode ser empregado para diferentes domínios de problemas, sendo necessário apenas o seu treinamento com dados específicos para o objetivo em questão. No contexto da bioinformática, o aprendizado de máquina permite a extração de conhecimento de forma mais automática e com menor necessidade de intervenção humana através da criação de métodos preditivos para diversas características de interesse. Exemplo disso são as ferramentas preditivas para características de proteínas, que aprenderam, a partir de dados já descritos na literatura científicas, como relacionadas a sequência da mesma com a sua localização sub-celular, função biológica, e até mesma estrutura terciária.
Deste modo, visando a melhor formação de recursos humanos no contexto da biotecnologia e bioinformática, o presente projeto tem por objetivo facilitar a troca de conhecimentos sobre a bioinformática, aprendizado de máquina e outras áreas correlatas.
O aprendizado de máquina (machine learning) é uma área da inteligência artificial dedicada à criação de algoritmos capazes de resolverem problemas para os quais não foram explicitamente programados. Para isso, ao invés de executarem instruções definidas para um problema específicos, os algoritmos aprendem, a partir da exposição a conjuntos de dados, quais "hipóteses" são mais relevantes para a solução de um problema específicos, e as utilizam posteriormente para a solução de um determinado problema. Deste modo, um mesmo algoritmo pode ser empregado para diferentes domínios de problemas, sendo necessário apenas o seu treinamento com dados específicos para o objetivo em questão. No contexto da bioinformática, o aprendizado de máquina permite a extração de conhecimento de forma mais automática e com menor necessidade de intervenção humana através da criação de métodos preditivos para diversas características de interesse. Exemplo disso são as ferramentas preditivas para características de proteínas, que aprenderam, a partir de dados já descritos na literatura científicas, como relacionadas a sequência da mesma com a sua localização sub-celular, função biológica, e até mesma estrutura terciária.
Deste modo, visando a melhor formação de recursos humanos no contexto da biotecnologia e bioinformática, o presente projeto tem por objetivo facilitar a troca de conhecimentos sobre a bioinformática, aprendizado de máquina e outras áreas correlatas.
Metodologia
O grupo de estudo se reunirá semanalmente, de forma remota, através da plataforma Google Meet. Os encontramos tão duração de aproximadamente 1 hora, sendo para cada semana definido um tópico e uma pessoa responsável para apresenta-la. Será encorajado a apresentação de exemplos práticos, com código, e a discussão de artigos científicos pertinentes.
Indicadores, Metas e Resultados
Serão avaliados como indicadores de desempenho do presente projeto a assiduidade dos alunos participantes, devendo estes ter pelo menos 70% de presença para receberem os certificados de participação no projeto. Ao final do projeto também será feito uma avaliação dos encontros e temas selecionados através de um formulário do Google Forms.
Equipe do Projeto
Nome | CH Semanal | Data inicial | Data final |
---|---|---|---|
AIRTON SINOTT CARVALHO | |||
ALESSANDRA NEIS | |||
AMANDA MUNARI GUIMARÃES | |||
ANDREI LUCAS PADILHA PEREIRA | |||
ANDRESSA FISCH | |||
ANTONIO DUARTE PAGANO | |||
AUGUSTO GARCIA SCHMIDT | |||
CHRISTIAN DOMINGUES SANCHEZ | |||
DIEGO SERRASOL DO AMARAL | |||
DÉBORA PIÉGAS PAVANI | |||
EDUARDO HENRIQUE MOSSMANN | |||
ELIZA ROSSI KOMNINOU | |||
FREDERICO SCHMITT KREMER | 1 | ||
GIULI ARGOU MARQUES | |||
GUILHERME FEIJÓ DE SOUSA | |||
HADASSA GABRIELA ORTIZ | |||
ISADORA LEITZKE GUIDOTTI | |||
JOAO GABRIEL MOREIRA DE SOUZA | |||
JOSÉ RAFAEL BORDIN | |||
KETHLIN DE QUADROS FERREIRA | |||
LUANA FERREIRA VIANA DOS REIS | |||
LUCAS COUTINHO FREITAS | |||
MARIA CLARA MARTINS FERREIRA | |||
MARIANA BERTOLDI AMATO | |||
MATHAUS CAMELATTO KRÜGER | |||
RAFAEL DOS SANTOS WOLOSKI | |||
RONALDO PEREIRA DE OLIVEIRA JUNIOR | |||
THIAGO PEREIRA DE OLIVEIRA CARVALHO | |||
VINICIUS FONSECA HERNANDES |